
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 1321±1340 (1997)

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS

WITH COMPLEX GEOMETRIES

A. A. JOHNSON AND T. E. TEZDUYAR*

Aerospace Engineering and Mechanics, Army HPC Research Center, University of Minnesota, 1100 Washington Avenue South,
Minneapolis, MN 55415, U.S.A.

SUMMARY

We present our numerical methods for the solution of large-scale incompressible ¯ow applications with complex
geometries. These methods include a stabilized ®nite element formulation of the Navier±Stokes equations,
implementation of this formulation on parallel architectures such as the Thinking Machines CM-5 and the CRAY
T3D, and automatic 3D mesh generation techniques based on Delaunay±VoronoõÈ methods for the discretization
of complex domains. All three of these methods are required for the numerical simulation of most engineering
applications involving ¯uid ¯ow.

We apply these methods to the simulation of air¯ow past an automobile and ¯uid±particle interactions. The
simulation of air¯ow past an automobile is of very large scale with a high level of detail and yielded many
interesting air¯ow patterns which help in understanding the aerodynamic characteristics of such vehicles. #
1997 by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 24: 1321±1340, 1997

No. of Figures: 21. No. of Tables: 1. No. of References: 38.

KEY WORDS: parallel ¯ow simulation; complex geometries; mesh generation; automobile

1. INTRODUCTION

One of the important aspects of the ®nite element method is the ability to model problems with

complex domains. Domains with any geometry can be handled provided that a ®nite element mesh

can be created which accurately represents the domain. To accurately represent a domain, the mesh

must have suf®cient resolution on the boundary to accurately represent the solid surfaces, interfaces

or free surfaces, and must have suf®cient resolution in the interior to model the ¯uid dynamics to a

required degree of accuracy. In most cases such a ®nite element mesh involves a large number of

elements and nodes and requires a high-performance computing (HPC) platform to obtain the

solution in a reasonable amount of time. Both these features of a simulation (HPC power and

complex geometries) are required to solve most engineering applications.

Our implementation of the ®nite element method to solve ¯uid dynamics applications on parallel

architectures has been in place for some time.1±4 The implementation uses the data-parallel

programming model on the Thinking Machines CM-5 and the message-passing programming model

on the CRAY T3D. The message-passing implementation is based on the Parallel Virtual Machine

CCC 0271±2091/97/121321±20 $17.50 Received 17 January 1996

1997 by John Wiley & Sons, Ltd. Revised 16 February 1996

* Correspondence to: T.E. Tezduyar, Aerospace Engineering and Mechanics, Army HPC Research Center, University of
Minnesota, 1100 Washington Avenue South, Minneapolis, MN 55415, U.S.A.

(PVM) libraries5 and is portable across architectures. We also have shared-memory implementations

on Silicon Graphics multiprocessor architectures. The implementations are based on the units of

parallelism of elements and nodes. Each group of elements (and each group of nodes) is assigned to a

particular processor which is responsible for the computations required by this group. When data

exchanges are required between the element and nodal parallel levels, a two-step gather and scatter

operation6,7 is used to facilitate the communication between the processors. To optimize this

communication, we employ mesh-partitioning techniques6,8 to reduce the amount of data that is sent

through the interconnect network of the parallel architecture.

Using these parallel implementations, we have been able to solve many applications with a large

number of unknowns, typically at around 10 G¯ops.7,9 One application computed on the CM-5 was

for supersonic ¯ow past a delta-wing10 and involved over ®ve million degrees of freedom. A recent

parachute ¯ow computation performed on the T3D involved more than 38 million equations.11,12 We

must mention here that these are coupled non-linear equations which are solved using iterative

solution techniques.

As these numerical simulations become larger and are applied to complex, real-world problems,

the mesh generation and management phases become more and more important. To model the

complex geometries encountered in these applications, we developed automatic mesh generation

software. The automatic mesh generator makes few or no assumptions on the shape of the domain;

because of this, almost any geometry can be modelled. By automating this process of mesh

generation, the sometimes enormous task of creating a special mesh generator for a speci®c

application is eliminated. We also signi®cantly decrease the time it takes between the conception of a

problem and the actual numerical simulation of the ¯uid ¯ow. Our package includes all the steps in

the mesh generation process such as 3D modelling, surface mesh generation and 3D volumetric mesh

generation.

There are several popular automatic mesh generation procedures, including the advancing front

method13,14 and the ®nite octree method.15 We are using a Delaunay±VoronoõÈ-type method.13,16,17

Delaunay-type mesh generators are the most general and create high-quality meshes. A Delaunay-

type mesh is one where each element's circumsphere contains no other nodes in the mesh. This basic

property leads to the development of nodal insertion algorithms where a new node is added to an

existing Delaunay-type mesh such that the new mesh is also of Delaunay type. We use an edge-

swapping nodal insertion algorithm17,18 which is then used within a general automatic mesh

generation procedure. This general procedure involves many aspects such as boundary mesh

generation and integrity, internal node generation, and re®nement control. Along with the 3D

automatic mesh generator, methods are developed to model the geometric objects. These include a

computer-aided design program based on BeÂzier surfaces19 and an automatic surface mesh generator

which applies 2D automatic mesh generation techniques for the discretization of the geometric

model. Both these programs are needed in any fully automatic mesh generation system.

This mesh generation software has been used in many of our ¯uid dynamics applications involving

complicated geometries. These applications include supersonic ¯ow past a ®ghter aircraft,4 ¯ow

around a submarine,12 ¯ow through channels and spillways,12 contaminant dispersion in a subway

station and around military vehicles,20 ¯ow past hypersonic re-entry vehicles21 and ¯ow past round

and ram-air parachutes.4 In this paper we highlight the use of our automatic mesh generation software

for ¯ow past an automobile and the simulation of multiple spheres falling in a liquid-®lled tube.

In Section 2 we present the semidiscrete, stabilized ®nite element formulation for the Navier±

Stokes equations of incompressible ¯ows. In Section 3 we highlight some of the features of our

implementation of the ®nite element method on parallel architectures under both the data-parallel and

message-passing programming models. In Section 4 we describe our automatic mesh generation

procedures, including geometric modelling, surface mesh generation and 3D volumetric mesh

1322 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

generation. In Section 5 we present two examples involving complex geometries. Some concluding

remarks are provided in Section 6.

2. GOVERNING EQUATIONS AND NUMERICAL FORMULATION

The governing equations are the Navier±Stokes equations of viscous, incompressible ¯ows. The ¯uid

occupies, at time instant t 2 �0; T �, a bounded region O � Rnsd which has boundary G, where nsd is

the number of spatial dimensions. The primary degrees of freedom are velocity and pressure, denoted

by u�x; t� and p�x; t�. The Navier±Stokes equations represent the balance of momentum and the

incompressibility constraint:

r
@u

@t
� u ? HHuÿ f

� �
ÿHH ? s � 0 on O; 8t 2 �0; T �; �1�

HH ? u � 0 on O; 8t 2 �0; T �; �2�

where r is the density of the ¯uid, s is the stress tensor and f�x; t� is a body force per unit mass. The

stress tensor s is de®ned as

s�p; u� � ÿpI� 2mee�u�; ee�u� � 1
2
�HHu� �HHu�T�; �3�

where m is the viscosity and I is the identity tensor.

The Dirichlet- and Neumann-type boundary conditions are given as

u ? ei � gi on �G�gi
; i � 1; . . . ; nsd; �4�

n ? s ? ei � hi on �G�hi
; i � 1; . . . ; nsd; �5�

where ei is the Cartesian unit vector corresponding to axis i; n is the unit normal vector for boundary

G, and �G�gi
and �G�hi

are complementary subsets of boundary G as related to the Dirichlet- and

Neumann-type boundary conditions. A divergence-free velocity ®eld is also needed as an initial

condition:

u�x; t� � u0 on O: �6�

The spatial domain is discretized using the ®nite element method, and integration in time is

achieved with ®nite difference approximations. We partition the time interval (0, T) into discrete time

levels tn, where tn belongs to an ordered series of time steps 0 � t0 < t1 < . . . < tN � T . For each

time level n, we de®ne the following ®nite element interpolation spaces for velocity and pressure:

�Sh
u�n � uh � uh

i

� �nsd

i�1

����uh
i 2 H1h�O�; uh

i _� gh
i on �G�gi

; 8i � 1; . . . ; nsd

� �
; �7�

�V h
u �n � wh � wh

i

� �nsd

i�1

����wh
i 2 H1h�O�;wh

i _� 0 on �G�gi
; 8i � 1; . . . ; nsd

� �
; �8�

�Sh
p�n � �V h

p �n � phjph 2 H1h�O�� 	
: �9�

Here H1h�O� represents the ®nite-dimensional function space over the spatial domain O. Over each

element domain this space is constructed using ®rst-order polynomials.

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1323

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

The semidiscrete, stabilized formulation22 can be written as follows: ®nd uh 2 �Sh
u�n and ph 2 �Sh

p�n
such that 8wh 2 �V h

u �n and 8qh 2 �V h
p �n�

O
wh ? r

@uh

@t
� uh ? HHuh ÿ fh

� �
dO�

�
O
ee�wh�:s�ph; uh� dOÿ

�
g

h

wh ? hhdG�
�
O

qhHH ? uhdO

�Pnel

e�1

�
Oe

t
r
�ruh ? HHwh ÿ HH ? s�qh;wh��

? r
@uh

@t
� uh ? HHuh ÿ fh

� �
ÿ HH ? s�ph; uh�

� �
dO

�Pnel

e�1

�
Oe

dHH ? whrHH ? uhdO � 0; �10�

where nel is the number of elements in the mesh. This process is applied sequentially to all time

levels.

The ®rst four terms in equation (10) constitute the standard Galerkin formulation, while the ®fth

and sixth terms are the stabilization terms. The de®nitions of t and d can be found in References 7, 23

and 24. The addition of the stabilizing terms does not compromise the consistency of the formulation,

since these terms are weighted with the residuals of the momentum and mass balance equations,

which vanish for exact solutions.

The time integration is carried out using ®nite difference approximations:

@uh

@t
_� uh

n�1 ÿ uh
n

Dt
; �11�

uh _� �1ÿ a�uh
n � auh

n�1; �12�

fh _� �1ÿ a�fh
n � afh

n�1: �13�
In proceeding with the semidiscrete solution technique, uh

n is given and the only unknowns are at time

level n� 1. The computations start with

uh
n _� u0 for n � 0: �14�

With the proper choice of a, the integration in time can be based on forward �a � 0�0�, central

�a � 0�5� or backward �a � 1�0� differencing.

3. PARALLEL IMPLEMENTATION

We implemented this ®nite element formulation on parallel platforms based on two different

programming models. We have a data-parallel implementation on the Thinking Machines CM-52 and

a message-passing implementation on the CRAY T3D.4 Both architectures can operate in either the

data-parallel or message-passing programming models, but we use the data-parallel model for the

CM-5 owing to its simplicity and the availability of advanced scienti®c software libraries and we use

the message-passing model for the T3D owing to its greater portability between architectures.

Brie¯y, the data-parallel model assumes that the parallel data elements are each assigned to a

different processor (if there are more data elements than processors, so-called virtual processors will

be created) and each processor performs the same set of computations, synchronized with the others,

on its own piece of data. In such a programming model the individual processors are somewhat

transparent to the user and communications between them can be handled by simple array addresses

to other parallel data elements. The message-passing model assumes that the processors are acting

individually. They each run the same program but may be performing different tasks than the

1324 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

others at different times. Communications are accomplished by explicit send and receive functions

from one individual processor to another. In such a programming model the individual processors are

not transparent and the fact that there are different processors that may be doing different things must

be taken into account when programming. Although the programming models we use on the two

platforms are different, they have some similarities.

On both models we have two levels of data: element and nodal levels. An equation level can be

incorporated along with the nodal level. In the data-parallel model each element (and each node) is

assigned to a (virtual) processor. When computations take place that involve only that parallel data

unit (like an element), the computations take place without any need for communication. The

assignment of elements to processors may be optimized by using Thinking Machines Scienti®c

Software Libraries (CMSSL) routines25 that cluster the elements into groups (or partitions) that are

spatially close together and placing each element in that group on the same physical processor. In the

message-passing model we explicitly assign elements and nodes to the individual processors. For

proper load balancing, each processor will contain, as closely as possible, an equal number of these

data elements. After all the elements and nodes are assigned, each individual processor is responsible

for performing computations required by its individual data elements. Again the assignment of

elements to the individual processors may be optimized by placing elements in a partition which are

spatially close together on the same processor; by doing so, each processor is responsible for a

particular piece of the ®nite element mesh.

Communication between processors in the data-parallel model may be achieved by simply

addressing a data element that exists on a separate (virtual) processor. This may not be the most

optimal way of performing communications though, so in places where we need to transfer data

between processors many times (as in the GMRES iterative solver), we use ef®cient CMSSL routines

to transfer data between the element and nodal levels. These are the gather and scatter routines.6,7

These routines are optimized by using a two-step gather and scatter method where transfers between

the element and nodal levels are facilitated by an intermediate, partition (processor)-level nodal

vector. The CMSSL routines save the communication paths for the data elements and these paths do

not need to be recomputed for repetitive data transfers. Also, the CMSSL library distributes the global

nodes on the processors such that, as much as possible, the global nodes lie on the same processor as

the corresponding nodes in the partition-level nodal vector. By doing this, when the partition-level

nodal vector is sent to or received from the global nodal vector, the amount of data that is accessed

off-processor is reduced.

In the message-passing model on the T3D no such communication libraries exist, so we created our

own routines which perform these two-step gather and scatter functions. The basic send and receive

routines on the T3D that perform the step of transferring data from one processor to another are

accommodated by the Parallel Virtual Machine (PVM) libraries.5 For optimal performance we use

the PVM Channels routines,26 which are CRAY-speci®c extensions of the standard PVM routines.

The PVM Channels routines are the fastest possible means of sending data from one processor to

another (while still using PVM) and we can store the communication paths for the data elements, so

they need to be computed only once. We developed libraries based on the PVM Channels to perform

all steps in the two-step gather and scatter method. We also developed libraries to assign global nodes

to processors which minimize as much as possible the off-processor communications on the CRAY

T3D. For mesh partitioning we use either those routines available in CMSSL or the Metis package.8

4. AUTOMATIC MESH GENERATION

An automatic mesh generator, by de®nition, uses some sort of boundary data alone as input and then

creates the interior nodes and elements automatically based on this boundary information. Since there

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1325

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

are few or no assumptions made about the boundary within the mesh generator, almost any geometry

can be modelled with such mesh generators.

The boundary de®nition we use in our package is a surface mesh composed of triangular elements.

This surface mesh, whose construction is discussed later in this section, de®nes a surface which fully

encloses the desired domain, and there could be holes within this domain with the de®nition of more

than one enclosed surface mesh. The re®nement in the interior of the domain in the ®nal 3D mesh is

dependent upon the re®nement on this surface mesh; because of this, we allow other interface meshes

in the input that exist just to specify a desired re®nement at a location within the interior of the

domain. These other interface meshes will not be a part of any boundary in the ®nal 3D mesh.

The methods we use to perform automatic mesh generation are those based on Delaunay±VoronoõÈ

methods.13,16,17 This means that the method is designed to create a Delaunay-type mesh. These

methods are probably the most general type of automatic mesh generator and generate high-quality

meshes. A Delaunay-type mesh has several features.13 One of the most important features of a Delaunay

mesh can be stated as: for each element in the mesh, its circumcircle (or circumsphere in 3D) which

encompasses all nodes de®ning that element contains no other nodes of the mesh. This feature of a

Delaunay mesh governs the way the elements construct themselves for a given set of nodes.

The Delaunay±VoronoõÈ methods make use of node insertion algorithms. Given a Delaunay-type

mesh composed of triangles in 2D or tetrahedra in 3D, we can insert a new node into this existing

mesh such that the resulting mesh is of Delaunay type. When each new node is placed in the mesh,

the elements around this node will rearrange themselves so as to meet this Delaunay criterion. In the

mesh generation process, nodes will be inserted into the mesh one-by-one until the entire mesh

satis®es a given quality criterion.

We use an edge-swapping algorithm17,18,27 for the process of nodal insertion. The edge-swapping

algorithm makes use of alternative element con®gurations to allow the old mesh to accommodate a

new node so as to meet the Delaunay criterion. When a new node is inserted into an existing mesh, an

advancing front of rearranging element con®gurations is swept out until the mesh again satis®es the

Delaunay criterion. More information about our implementation of this algorithm can be found in

Reference 7. We ®nd this algorithm to be superior to other such nodal insertion algorithms owing to

the greater amount of control we have over the process of the elements rearranging themselves.

The edge-swapping nodal insertion algorithm is simply a method to insert one node into an existing

mesh and forms the basis for our general mesh generation package. The steps we use to construct a

Delaunay-type mesh using this nodal insertion algorithm are listed below.

1. Generate a mesh of a parallelepiped box with eight nodes and ®ve tetrahedral elements which

encloses all the nodes within the input surface mesh. This mesh will be the starting mesh of the

algorithm and any nodal insertion later will be modi®cation of this mesh.

2. Using thenodal insertionalgorithm,insertall theboundarynodesone-by-oneinto theexistingmesh.

3. Remove all elements, and the eight nodes from Step 1, which are on the exterior of the desired

domain. The exterior portions of the mesh are those not within the enclosed geometry de®ned

by the input surface mesh.

4. Insert new nodes into the remaining interior portions of the mesh until the mesh satis®es some

quality criterion.

We now provide some details for Steps 2±4.

Step 2

The ®nal mesh must reconstruct the desired geometry of the objects being modelled. This means

that the surface of the resulting 3D mesh must match the input surface mesh. This property may not

1326 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

exist in a mesh if the nodes of the surface mesh are inserted in any order without taking into account

the elements of the surface mesh. In our implementation we insert the boundary nodes into the mesh

in such a way that the elements of the surface mesh do exist within the 3D mesh (a triangular surface

element exists within the 3D mesh if it matches a face of a tetrahedral element).

Our boundary node insertion algorithm goes as follows. We ®rst reorder the input surface elements

in such a way that by going through the list from the ®rst element to the last, an advancing front of

elements is swept out across the model surface. We then begin a loop through the list of surface

elements, and if any node of a surface element is not inserted into the 3D mesh, we insert that node.

Once all this surface element's nodes are in the 3D mesh, we check to see whether the surface

element exists within the 3D mesh, and if so, we tag the face within the 3D mesh that represents this

surface element. Through a modi®cation of the edge-swapping nodal insertion algorithm we do not

allow these tagged faces to be altered in any way during the remainder of the boundary node insertion

process. By altering the nodal insertion algorithm in this way, the triangulation (at least of just the

boundary nodes) is called a constrained Delaunay triangulation.

Once all boundary nodes are inserted into the 3D mesh, we determine whether any surface

elements are not represented within the 3D mesh. If so, there will be holes in the representation of the

surface mesh within the 3D mesh. In practice we have seen that only a very small number of the

surface elements are not represented within the 3D mesh at this step in the algorithm. We assumed

that the discretization of the surface mesh was ®ne enough to represent the geometry accurately,

so we look for other faces in the 3D mesh which will close these holes. We then mark these other

faces as being a representation of our surface mesh.

There have been several other proposed schemes to force the automatic mesh generator to

reconstruct the desired boundary within the 3D mesh. George et al.16 advocate just inserting the

boundary nodes in the usual manner and then later rearranging the tetrahedral elements so as to

recreate the surface mesh within the 3D mesh. We ®nd this implementation complicated. Our method

seems to be fairly robust and fails to represent the surface elements in only a few cases. In such cases

an increase in the re®nement in the problem areas of the model usually ®xes the problem. A future

implementation may incorporate some ideas from Reference 16 to reconstruct the elements in these

problem areas.

Step 3

Since we assured that the surface mesh has been reconstructed within the 3D mesh composed of

the boundary points in Step 2, we can remove all the elements on the exterior sides of this

representative surface mesh. We now have a valid 3D tetrahedral element mesh with the proper

boundary representation.

Step 4

The mesh composed of just boundary nodes needs to be completed by insertion of interior nodes.

Before explaining this process, we need to de®ne what we call the height function. The height

function speci®es the desired level of re®nement in the interior of the mesh and in our

implementation the height function speci®es the desired edge length of the elements. The desired

edge length at the boundary nodes is taken from the re®nement of the surface mesh, and since the

mesh composed of just boundary nodes is a valid ®nite element mesh, we use the function space

de®ned by the existing elements to specify the height function throughout the domain. Since we use

linear basis functions, the re®nement in the interior is linearly dependent on the re®nement of the

surface mesh.

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1327

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

With the de®nition of the height function we can now compare the ratio between the actual

re®nement and the desired re®nement for each element. We ®nd the element with the largest ratio

between the actual and speci®ed re®nements, and if this ratio is larger than some threshold value, we

insert a new node at the centre of this element's circumsphere. The insertion of the new node at the

centre of the circumsphere works well, since the location of the new node is equidistant from each of

the nodes making up this element and the distance to any other node in the mesh is larger than this

length owing to the Delaunay criterion. This location of a new node is also recommended in

Reference 17. We continue this process until the ratio between the actual and speci®ed re®nements is

below the threshold value for each element within the mesh.

In our mesh generation package we have the option of generating layers of thin, semistructured

elements around boundaries so as to better model boundary layer features of the ¯ow. We create these

boundary layer elements and nodes between Steps 3 and 4 of the mesh generation procedure, when

the 3D mesh containing just the boundary nodes has been created but no internal nodes have been

generated.

At each node of the input surface mesh there exists a unit normal vector pointing into the desired

domain. We generate a series of nodes along each normal vector. The spacing and number of these

nodes are de®ned by the desired thickness and number of layers. Once all boundary layer nodes are

de®ned, we check each one to see whether it is too close to an existing boundary node, in which case

it is eliminated, or to another boundary layer node, in which case the two close boundary layer nodes

are merged. We then insert each remaining boundary layer node into the 3D mesh using the nodal

insertion algorithm. Once all boundary layer nodes are within the 3D mesh, thin boundary layer

elements will have been constructed with these new nodes owing to the Delaunay property of the

mesh. We then tag these thin boundary layer elements and do not let these tagged elements be altered

in any way during the process of generating the internal nodes. If we did not do this, the structure of

the boundary layer elements might be lost owing to the creation of a close internal node.

As an example of our 3D mesh generation program, a view of a cross-sectional slice of a

tetrahedral element mesh can be seen in Figure 1. Notice in Figure 1 that we created a rectangular

interface in the interior of the mesh just to specify a re®nement level at this location. By doing this,

we can concentrate the smaller elements in a region around the object. A view of the height function

at this same cross-section can be seen in Figure 2, where the contours of the desired edge length are

plotted. The effect of this re®nement interface can clearly be seen in this ®gure. A different cross-

sectional view of this mesh is shown in Figure 3, where the thin boundary layer elements can more

clearly be seen.

Along with the program to generate the actual 3D tetrahedral element mesh, we have several

other programs which are used in the mesh generation process. The most important of these

programs are our interactive geometric modelling program and the automatic surface mesh

generator.

Geometric modeller

The geometric model de®nition for our 3D objects is composed of quadrilateral and triangular

BeÂzier surfaces.19 This method of geometric modelling is very ¯exible and most shapes can be

represented as a patchwork of these types of surfaces. Also, since these surfaces are parametric ones,

X � X�u; v�, where u and v are the parameters, the discretization of these surfaces will be much easier

to perform. We also include in the geometric model the desired re®nement of the 3D mesh at each

corner of the BeÂzier surfaces.

We developed an interactive graphic modelling program to help the user to create the

sometimes very complex models. The program also has many features which do a lot of the work

1328 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

for the user while building models. A view of the control points and BeÂzier edges from the modelling

program for the earlier example model can be seen in Figure 4, and a view of the BeÂzier surfaces can

be seen in Figure 5. The structured mesh representing the surfaces in Figure 5 are just for display

purposes and have nothing to do with the ®nal surface mesh of this model.

Automatic surface mesh generation

Once the geometric model is built, we perform automatic mesh generation on each BeÂzier surface

so as to create a surface mesh composed of triangular elements. The process of automatic mesh

generation on a BeÂzier parametric surface is very similar to a 2D implementation of our 3D mesh

generation procedure. We still use an edge-swapping nodal insertion algorithm, but in 2D. The mesh

is stored in the parametric space (u; v) while it is being constructed, but the decisions made about

when to swap elements in the edge-swapping algorithm are made in 3D space (the mesh in the

Figure 1. Cross-sectional view of example 3D tetrahedral element mesh

Figure 2. Cross-sectional view of height function which represents desired edge length in interior of domain

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1329

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

Figure 3. Closer cross-sectional view of example 3D tetrahedral element mesh

Figure 4. Control points and BeÂzier edges as viewed from modelling program

Figure 5. BeÂzier surfaces as viewed from modelling program

1330 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

parametric space mapped into 3D). The generation of new nodes in the interior of the surface mesh is

the same as in the 3D mesh generation procedure, but since a circumcircle is not clearly de®ned on a

parametric surface, we use an iterative algorithm to ®nd a point on the BeÂzier surface that is

equidistant from each node comprising an element. As in the 3D mesh generation procedure, the

re®nement on this surface mesh is based on the re®nement at the corners of the BeÂzier surfaces that

was speci®ed in the geometric model. More details about this surface mesh generation procedure can

be found in Reference 7.

This method for generating a surface mesh seems to be fairly robust and fails for only some special

cases. In our experience the method only fails for highly distorted BeÂzier surfaces. In such cases the

geometric model will have to be slightly modi®ed to create better-shaped BeÂzier surfaces. We believe

that with some improvement to the algorithm, the method will be fully robust. The surface mesh

generated for the example model in this section can be seen in Figure 6. Notice in the surface mesh of

Figure 6 that we speci®ed a higher re®nement level at the intersection of the two components than at

the ends of the model sections.

5. EXAMPLES

Air¯ow past an automobile

In this problem, air¯ow past an automobile traveling at 55 mph is simulated. The automobile is

modelled after a Saturn SL2 and the model is quite detailed. The model generated with our interactive

modelling program has 292 BeÂzier surface and contains wheels, rear-view mirrors, recessed

headlights and a spoiler (see Figure 7). Since the geometry is symmetric, only half of the automobile

is modelled. The surface mesh for our model contains 35,307 nodes and 70,937 triangular elements.

The automatic mesh generator created a 3D mesh with 227,135 nodes and 1,407,579 tetrahedral

elements. We then re¯ected the mesh to carry out the ¯ow simulation for the full automobile. This

®nal mesh contains 448,695 nodes and 2,815,158 tetrahedral elements.

A view of the surface of the 3D mesh can be seen in Figure 8. A 2D slice of the 3D mesh at a

section cutting both wheels can be seen in Figure 9. Notice in Figure 9 that we created a more re®ned

region within the 3D mesh to concentrate the smaller elements around the automobile and in the wake

region. It is in these regions where the main ¯ow features are located. Outside this re®nement region,

Figure 6. Surface mesh for example model

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1331

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

larger elements are used to ®ll up the rest of the domain. Also notice in Figure 9 that we created three

very thin layers of elements around the automobile and wheels. This is done so as to capture the

boundary layer features of the ¯ow more accurately. A closer view of these boundary layer elements

can be seen in Figure 10.

At 55 mph (Re� 6�96 106 based on the total automobile length) the ¯ow around the

automobile is assumed to be incompressible and turbulent, so the time-averaged, incompressible

Navier±Stokes equations are solved. We use a Smagorinsky turbulence model in this simulation.28±30

This is a zero-equation model where the viscosity coef®cient is augmented with an eddy viscosity

coef®cient nt so as to model the unresolved (subgrid) scales in the ¯ow. The eddy viscosity is given

by

nt � Csh
2
e�eijeij�1=2; �15�

where Cs is a model constant (a value of 0�1 was used) and he is an approximate measure of element

length. For the ef®cient use of the computing resources a matrix-free version of our ¯ow solver is

Figure 7. Front and rear views of automobile

Figure 8. Surface of 3D tetrahedral element mesh for automobile (448,695 nodes and 2,815,158 elements)

1332 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

used to obtain the solution. In the matrix-free implementation the left-hand-side matrix is never

stored, but its in¯uence within the iterative solver, through a matrix multiplication, is recomputed

directly as needed.

The simulation is carried out under two ¯ow conditions. One simulation models the actual road

conditions of the automobile. This means that the wheels are spinning and the freestream velocity is

imposed on the road as well as the in¯ow boundary. The second simulation models wind tunnel

conditions. This means that the tires (as well as the autobody) have zero velocity and there are slip

conditions imposed on the road. This second simulation is performed so as to better compare the drag

coef®cient with that measured in a wind tunnel. We also created a second mesh without rear-view

mirrors so as to see the effect of this component on the overall drag on the automobile. Both meshes

are similar in re®nement and have almost the same number of nodes and elements. All images of the

¯ow ®eld are for the mesh with rear-view mirrors.

Figure 9. Cross-section of 3D tetrahedral element mesh for automobile at section cutting both wheels

Figure 10. A close-up view of boundary layer elements in automobile mesh

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1333

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

The computed lift and drag coef®cients for the automobile are given in Table I. For reference, the

drag coef®cient stated for a Saturn SL2 automobile is 0�343,31 but it is important to remember that

our computational model is only an approximation to a Saturn SL2. An interesting thing to note from

Table I is the rather large increase in the lift and drag coef®cients of the automobile under road

conditions over those under wind tunnel conditions.

In Plates 1 and 2 can be seen the streamlines past the automobile under both ¯ow conditions. Plate

1 is a top view and Plate 2 is a side view. In Plate 3 can be seen the rendering of pressure distribution

on the surface of the automobile under road conditions.

Table I: Computed drag and lift coef®cients

Road conditions
Wind tunnel
conditions

CD CL CD CL

With mirror 0�455 0�290 0�354 0�162
Without mirror 0�448 0�306 0�327 0�171

Figure 11. Velocity vectors at cross-section normal to incoming velocity at quarter car length behind automobile

1334 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

The velocity vectors at a cross-section normal to the incoming velocity at a section a quarter of a

car length behind the automobile under both ¯ow conditions can be seen in Figure 11 and at a section

at the location of the rear wheels under both ¯ow conditions in Figure 12. The velocity vectors at a

cross-section at a rear part of the automobile (behind the wheels) can be seen in Figure 13. The

pressure distribution on the symmetry plane is shown in Plate 4. The pressure distribution at a cross-

section perpendicular to the in¯ow velocity a quarter of a length behind the automobile is shown in

Plate 5.

There are four main features of the ¯ow ®eld which can be observed within these ®gures and

plates. These include the trailing vortices in the wake of the automobile, the ¯ow patterns induced by

the rotating wheels, the recirculation regions and the overall pressure ®eld. All these features in the

computed ¯ow ®eld compare qualitatively well with those observed by other researchers both

experimentally and computationally.30,32±35 A more detailed analysis of these automobile ¯ow

simulations can be found in Reference 7.

Multiple spheres falling in a liquid-®lled tube

In this case we simulate multiple spheres falling in a liquid-®lled tube. The spheres interact with

the ¯uid forces and each other as they are allowed to rotate and translate governed by Newton's laws

of motion. A space±time version23,24 of the formulation given by equation (10) is used in this

simulation. This problem has previously been described in References 7 and 36 and the use of the

automatic mesh generator for this application will be highlighted here.

In this application there is the requirement that there may be any number of spheres at any location

within the tube. Because of this requirement, the only option in discretizing the domain is with an

automatic mesh generator. Throughout the simulation the spheres move and the motion of the mesh is

accommodated using the automatic mesh moving scheme described in References 36 and 37. When

the mesh gets too distorted, we remesh by generating an entirely new mesh with the automatic mesh

generator and then project the solution from the old mesh on to the new one. By using the automatic

mesh-moving scheme together with remeshing, we minimized the number of remeshes and there is

no restriction on the type of motion each sphere is allowed.

Figure 12. Close-up view of velocity vectors at cross-section normal to incoming velocity at location of rear wheels

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1335

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

For this application where we need to run the automatic mesh generator many times (owing to

repetitive remeshing), we created a special version of the mesh generator for this speci®c geometry.

This program has a very simple input ®le format and concentrates the nodes in regions where mesh

re®nement is important, such as those close to the wake of each sphere. As with the general automatic

mesh generator, this special version has the ability to create structured layers of elements around each

sphere to better model the boundary layer features of the ¯ow.

The ®rst example involves two spheres falling together. The spheres are initially in a staggered

con®guration and throughout the simulation they exhibit the behaviour of drafting, kissing and

tumbling reported in Reference 38. The sphere con®gurations along with a cross-section of the mesh

at three instants during the simulation are shown in Figure 14. Notice in Figure 14 that the stretching

of the mesh due to the automatic mesh-moving scheme can clearly be seen in the mesh cross-sections.

Figure 13. Velocity vectors at section normal to incoming velocity at section at rear part of automobile (behind wheels)

1336 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

A close-up view of one of the mesh cross-sections can be seen in Figure 15, with the boundary layer

elements around each sphere.

The second example involves ®ve spheres initially in a pyramid con®guration. There are four

spheres arranged in a square with one other sphere in the centre and above all the others. Throughout

the simulation the centre sphere moves through the square and eventually settles to a level even with

the other four to form a
 shape. The sphere con®gurations along with a cross-section of the mesh at

three instants are shown in Figure 16. The mesh stretching can also be seen in this ®gure.

Figure 14. Con®guration and mesh cross-section at three instants during simulation of two spheres falling in liquid-®lled tube

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1337

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

6. CONCLUDING REMARKS

In this paper we have demonstrated our methods for the solution of ¯ow problems involving complex

geometries. These methods include a stabilized ®nite element formulation implemented ef®ciently on

parallel architectures. This parallel implementation is very general and can be applied under two

programming models and on several architectures. We also have an automatic mesh generation tool

which allows us to discretize domains of very complex shape in a reasonable amount of time. This

mesh generator is based on Delaunay±VoronoõÈ methods with edge-swapping techniques. Also, we

have the tools which allow us to model and discretize objects with complex geometries, and this is an

essential component in simulation of most engineering applications.

With these computational tools we can apply numerical methods to the solution of very

challenging engineering applications. In the past, numerical methods have mostly been applied in

basic research and an idealised applications, but today, with the use of these methods and others like

them, numerical analysis can be useful in the actual design process in engineering. We demonstrated

such an application here with the simulation of air¯ow past an automobile performed at a scale and

with such detail that would have been impossible only a few years ago.

ACKNOWLEDGEMENTS

This research was sponsored by ARPA under NIST contract 60NANB2D1272 and by the Army High

Performance Computing Research Center under the auspices of the Department of the Army, Army

Research Laboratory co-operative agreement number DAAH04-95-2-0003=contract number

DAAH04-95-C-0008, the content of which does not necessarily re¯ect the position or the policy

of the government, and no of®cial endorsement should be inferred. CRAY C90 time was provided in

part by the University of Minnesota Supercomputer Institute.

Figure 15. Close-up of cross-section of mesh, highlighting structured layers of elements around each sphere

1338 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

REFERENCES

1. T. E. Tezduyar, M. Behr, S. Mittal and A. A. Johnson, `Computation of unsteady incompressible ¯ows with the ®nite
element methodsÐspace-time formulations, iterative strategies and massively parallel implementations', in P. Smolinkski,
W. K. Liu, G. Hulbert and K. Tamma (eds), New Methods in Transient Analysis, AMD Vol. 143, ASME, New York, 1992,
pp. 7±24.

2. M. Behr, A. Johnson, J. Kennedy, S. Mittal and T. E. Tezduyar, `Computation of incompressible ¯ows with implicit ®nite
element implementations on the Connection Machine', Comput. Methods Appl. Mech. Eng., 108, 99±118 (1993).

3. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson and S. Mittal, `Parallel ®nite-element computation of 3D ¯ows', IEEE
Comput., 26(10), 27±36 (1993).

4. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro and C. Waters, `3D simulations of ¯ow problems with parallel
®nite element computations on the Cray T3D', in Computational Mechanics '95, Proc. Int. Conf. on Computational
Engineering Science, Mauna Lani, HI, 1995.

Figure 16. Con®guration and mesh cross-section at three instants during simulation of ®ve spheres falling in liquid-®lled tube

PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS 1339

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997)

5. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual Machine. A Users'
Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA, 1994.

6. Z. Johan, K. K. Mathur, S. L. Johnson and T. J. R. Hughes, `An ef®cient communications strategy for ®nite element
methods on the Connection Machine CM-5 system', Comput. Methods Appl. Mech. Eng., 113, 363±387 (1994).

7. A. A. Johnson, `Mesh generation and update strategies for parallel computation of ¯ow problems with moving boundaries
and interfaces', Ph.D. Thesis, University of Minnesota, 1995.

8. G. Karypis and V. Kumar, `METIS: unstructured graph partitioning and sparse matrix ordering systems', Tech. Rep.,
Department of Computer Sciencee, University of Minnesota, 1995; METIS is available on the WWW.

9. S. Aliabadi and T. E. Tezduyar, `Parallel ¯uid dynamics computations in aerospace applications', Int. j. numer. methods
¯uids, 21, 783±805 (1995).

10. T. E. Tezduyar, S. K. Aliabadi, M. Behr and S. Mittal, `Massively parallel ®nite element simulation of compressible and
incompressible ¯ows', Comput. Methods Appl. Mech. Eng., 119, 157±177 (1994).

11. S. Aliabadi, `Large scale simulation capability for ram air parafoils is achieved on the Cray T3D', AHPCRC Bull., 5(3)
(1995).

12. T. E. Tezduyar and A. A. Johnson, `The world of ¯ow simulation', in Lecture Notes on Finite Element Simulation of Flow
Problems, Japan Society of Computational Fluid Dynamics, Tokyo, 1995.

13. P. L. George, Automatic Mesh Generation, Application to Finite Element Methods, Wiley, Chichester, 1991.
14. T. J. Baker, `Developments and trends in three-dimensional mesh generation', Appl. Numer. Math., 5, 275±304 (1989).
15. M. S. Shephard and M. K. Georges, `Automatic three-dimensional mesh generation by the ®nite octree technique', Int. j.

numer. methods eng., 32, 709±749 (1991).
16. P. L. George, F. Hecht and E. Saltel, `Automatic mesh generator with speci®ed boundary', Comput. Methods Appl. Mech.

Eng., 92, 269±288 (1991).
17. T. J. Barth, `Aspects of unstructured grids and ®nite-volume solvers for the Euler and Navier±Stokes equations', in Special

Course on Unstructured Grid Methods for Advection Dominated Flows, Advisory Group for Aerospace Research and
Development, 1992, pp. 6-1±6±61.

18. B. Joe, `Construction of three-dimensional Delaunay triangulation using local transformations', Comput. Aided Geom.
Design, 8, 123±142 (1991).

19. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic, New York, 1993.
20. T. E. Tezduyar and A. A. Johnson, `High performance computing', in Lecture Notes on Finite Element Simulation of Flow

Problems, Japan Society of Computational Fluid Dynamics, Tokyo, 1995.
21. M. Litke, `Reusable launch vehicle II', University of Minnesota Aerospace Design Project, 1995.
22. V. Kalro and T. E. Tezduyar, `Parallel ®nite element computation of 3D incompressible ¯ows on MPPs', in W. G. Habashi

(ed.), Solution Techniques for Large-Scale CFD Problems, Wiley, New York, 1995, pp. 59±81.
23. T. E. Tezduyar, M. Behr and J. Liou, `A new strategy for ®nite element computations involving moving boundaries and

interfacesÐthe deforming-spatial-domain=space±time procedure: I. The concept and the preliminary tests', Comput.
Methods Appl. Mech. Eng., 94, 339±351 (1992).

24. T. E. Tezduyar, M. Behr, S. Mittal and J. Liou, `A new strategy for ®nite element computations involving moving
boundaries and interfacesÐthe deforming-spatial-domain=space±time procedure: II. Computation of free-surface ¯ows,
two-liquid ¯ows, and ¯ows with drifting cylinders', Comput. Methods Appl. Mech. Eng., 94, 353±371 (1992).

25. CMSSL for CM Fortran: CM-5 Edition, Version 3.1, Thinking Machine Corporation, 1993.
26. PVM and HeNCE Programmer's Manual, SR-2501 3.0 edition, Cray Research, 1993.
27. C. L. Lawson, `Properties of n-dimensional triangulations', Comput. Aided Geom. Design, 3, 231±246 (1986).
28. Y. Morinishi and T. Kobayashi, `Large eddy simulation of complex ¯ow ®elds', Comput. Fluids, 19, 335±346 (1991).
29. C. Kato, A. Iida, Y. Takano, H. Fujita and M. Ikegawa, `Numerical prediction of aerodynamic noise radiated from low

Mach number turbulent wake', Conf. Proc. 31st AIAA Aerospace Sciences Meet. Exhit., New York 1993.
30. T. Kobayashi, `A review of CFD methods and their application to automobile aerodynamics', in SAE Special Publication

SP-908, Vehicle Aerodynamics: Wake Flows, CFD, and Aerodynamic Testing, Society of Automotive Engineers, 1992, pp.
53±64.

31. D. J. Holt, `Saturn: the vehicles', Automot. Eng., 98, 34±43 (1990).
32. A. Cogotti, `Aerodynamic characteristics of car wheels', in Technological Advances in Vehicle Design Series, SP3; Impact

of Aerodynamics on Vehicle Design, International Journal of Vehicle Design, 1983, pp. 173±196.
33. M. Takagi, K. Hayashi, Y. Shimpo and S. Uemura, `Flow visualization techniques in automotive engineering', in

Technological Advances in Vehicle Design Series, SP3; Impact of Aerodynamics on Vehicle Design, International Journal
of Vehicle Design, 1983, pp. 500±511.

34. A. J. Scibor-Rylski, Road Vehicle Aerodynamics: Second Edition, Wiley, Chichester, 1984.
35. Society of Automotive Engineers, `Aerodynamic ¯ow visualization techniques and procedures', SAE Infor. Rep. HS J1566,

1986.
36. A. A. Johnson and T. E. Tezduyar, `Simulation of multiple spheres falling in a liquid-®lled tube', Comput. Methods Appl.

Mech. Eng., 134 351±373 (1996).
37. A. A. Johnson and T. E. Tezduyar, `Mesh update strategies in parallel ®nite element computations of ¯ow problems with

moving boundaries and interfaces', Comput. Methods Appl. Mech. Eng., 119, 73±94 (1994).
38. A. F. Fortes, D. D. Joseph and T. S. Lundgren, `Nonlinear mechanics of ¯uidization of beds of spherical particles', J. Fluid

Mech., 177, 467±483 (1987).

1340 A. A. JOHNSON AND T. E. TEZDUYAR

INT. J. NUMER. METH. FLUIDS, VOL 24: 1321±1340 (1997) # 1997 by John Wiley & Sons, Ltd.

